

Goal

• Multi-person pose estimation in monocular RGB images

State of the Art

- single person + occl. reasoning [Chen&Yuille, CVPR'15] no true multi-person reasoning
- two-stage approaches [Eichner&Ferrari, ECCV'10]

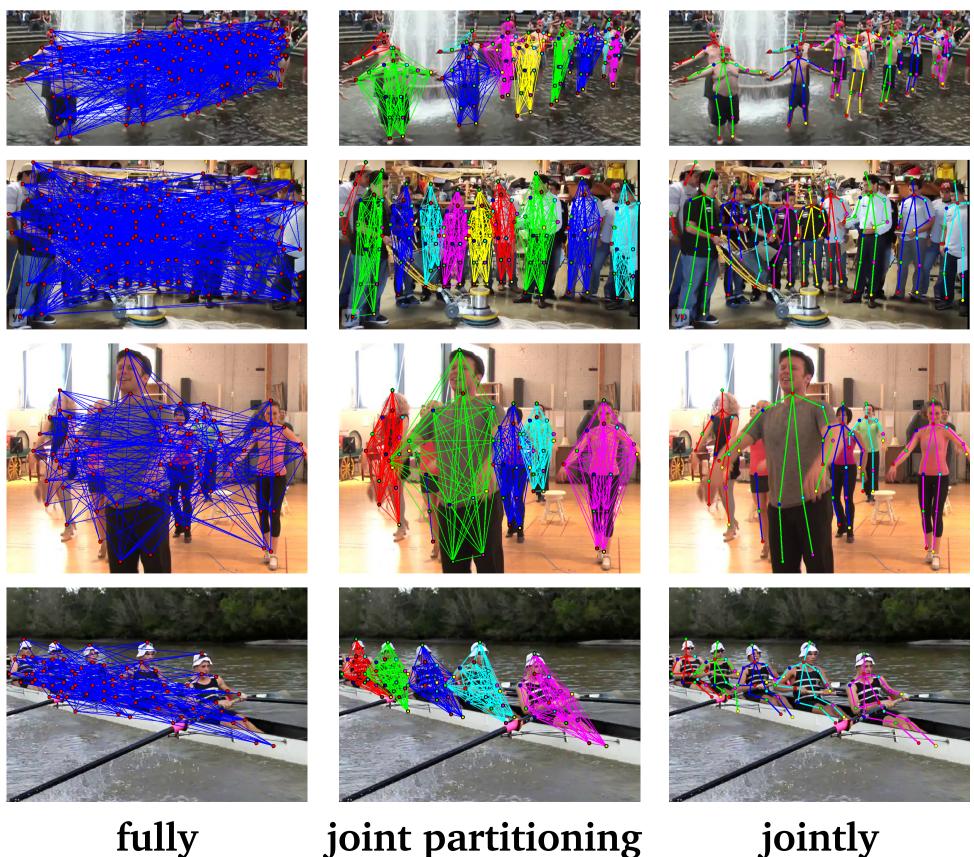
pose estimation

reliable people detector required

feed-forward approach prone to errors

Contributions

• Novel joint formulation

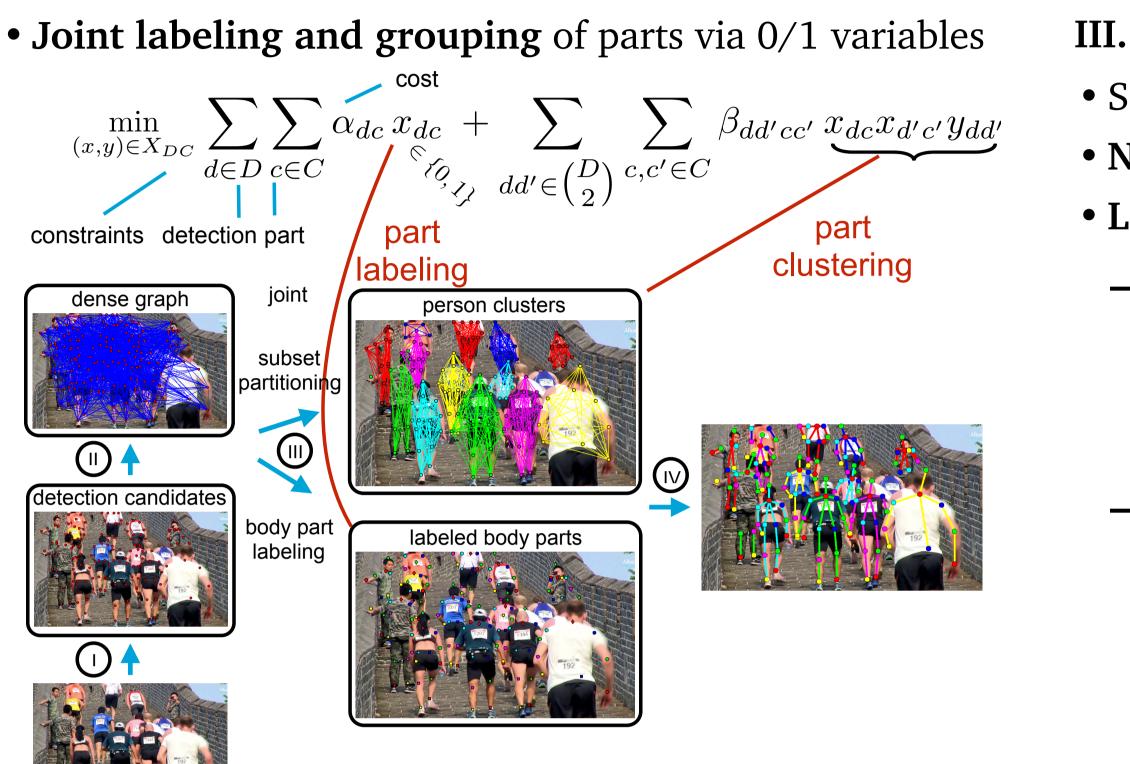


- + joint labeling and grouping of body part hypotheses
- + joint multi-person pose estimation

Code available! https://pose.mpi-inf.mpg.de

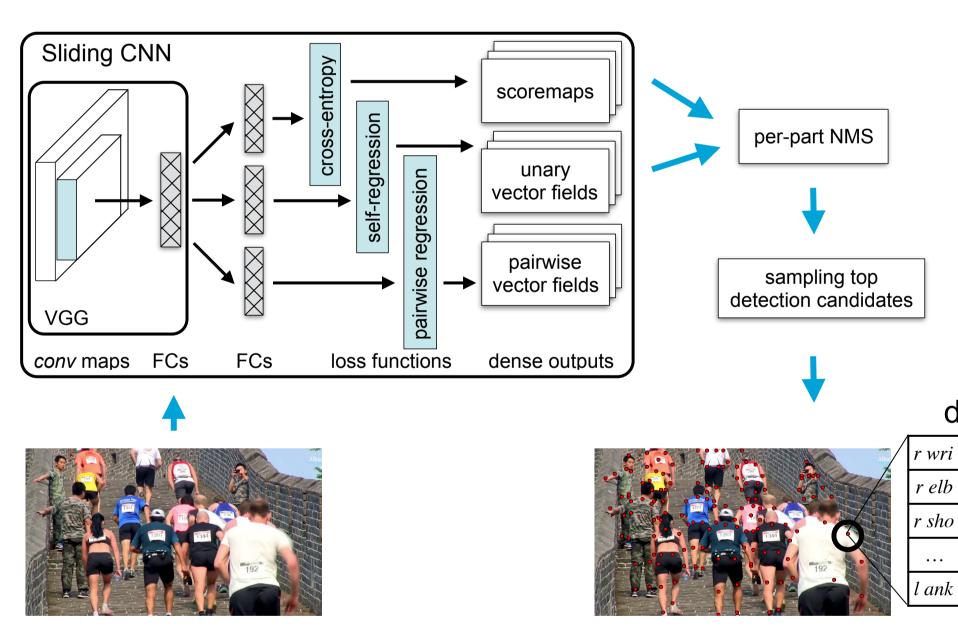
Qualitative results

joint partitioning and labeling connected graph


jointly estimated poses

DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation

Leonid Pishchulin¹, Eldar Insafutdinov¹, Siyu Tang¹, Bjoern Andres¹, Mykhaylo Andriluka^{1,3}, Peter Gehler² and Bernt Schiele¹

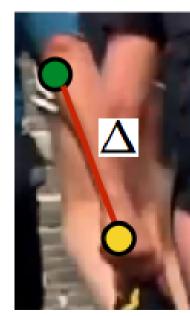

¹Max Planck Institute for Informatics Saarbrücken, Germany

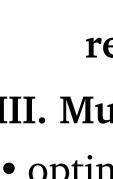
DeepCut

I. Unary probabilities

• fully-convolutional CNN architecture based on VGG [7]

II. Pairwise probabilities


• Proximity


- same body part class (c = c') – probability \propto distance⁻¹

• Kinematic relations

- -different body part classes (c! = c')
- probability via logistic regression from spatial relationship
- Capture part relationships within/across people

St head,

DeepCut (contd.)

- uniqueness

- $\forall dd'd'' \in \binom{D}{3}: \quad y_{dd'} + y_{d'd''} 1 \le y_{dd''}$

Improvements: DeeperCut (arXiv'16) [4]

²Max Planck Institute for Intelligent Systems Tübingen, Germany

³Stanford University Stanford, USA

left elbow

right elbow left elbow

erson 1 🛌 🚺 person 2

right wrist left wrist person 1 person 2

right wrist person 1 person 2

ight elbow 📗

left elbow

person 2

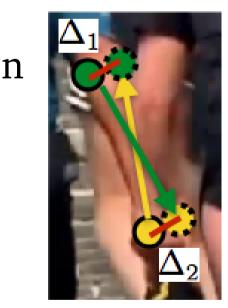
III. Integer Linear Program (ILP)

• Substitute $z_{dd'cc'} = x_{dc} x_{d'c'} y_{dd'}$ to convert objective to ILP • **NP-Hard** problem solved via branch-and-cut (1% gap) • Linear constraints on 0/1 labelings: plausible poses

$\forall d \in D: \quad \sum_{c \in C} x_{dc} \le 1$

– consistency

 $\forall dd' \in \binom{D}{2}: \quad y_{dd'} \leq \sum x_{dc}$ $\forall dd' \in \binom{D}{2}: \quad y_{dd'} \leq \sum x_{d'c}$


- transitivity

I. Unary probabilities

• deeper architectures based on Residual Networks [3]

II. Pairwise probabilities

• image conditioned CNN pairwise regression – probability via logistic regression from both spatial relationship and appearance

regression from left shoulder predicting right knee location

regression from all parts **III.** Multi-stage optimization

unary only

• optimize for reliable parts first, add less reliable later

tage 1 Stage 2		Stage 3				
shoulders	elbows, wrists	hips, knees, ankles				

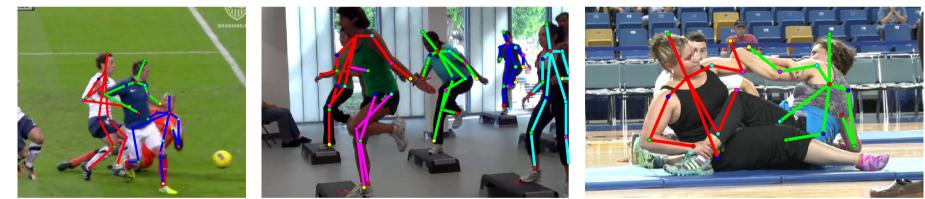
Results

Multi-person pose estimation

Setting

DeepCut DeeperCut +image cond. pai +deeper archit +multi-stage

DeeperCut (1-stage DeeperCut Faster R-CNN [6] +


• We are Family (WAF) [2]

Setting

DeepCut DeeperCut Ghiasi et al., CVPR

Eichner&Ferrari, E Chen&Yuille, CVPR'

• Failure cases

Single person pose estimation • MPII Single Person dataset [1]

Setting

DeepCut (unary) DeeperCut (unary)

Newell et al., arXiv' Wei et al., CVPR'16 Gkioxary et al., arXiv Lifshitz et al., arXiv'

• Leeds Sports Poses (LSP) [5]

Setting

DeepCut (unary) DeeperCut (unary)

Wei et al., CVPR'16 Lifshitz et al., arXiV'

References

- pose estimation. In *BMVC'10*.
- region proposal networks. In NIPS'15. recognition. arXiv'14.

• MPII Multi-Person dataset [1]

– Mean Average Precision (mAP) metric

U			•	-							
	Head	Sho	Elb	Wri	Hip	Knee	Ank	mAP	time (s)		
subset of 288 images											
	73.4	71.8	57.9	39.9	56.7	44.0	32.0	54.1	57995		
irwise	83.1	75.8	64.6	54.0	60.6	52.0	44.9	62.6	2336		
ecture	83.3	79.4	66.1	57.9	63.5	60.5	49.9	66.2	1333		
e optim.	87.5	82.8	70.2	61.6	66.0	60.6	56.5	69.7	230		
		f	ull set								
optim.)	73.7	65.4	54.9	45.2	52.3	47.8	40.7	54.7	2785		
	79.1	72.2	59.7	50.0	56.0	51.0	44.6	59.4	485		
unary	64.9	62.9	53.4	44.1	50.7	43.1	35.2	51.0	1		

– Percentage of Correct Parts (PCP) metric

	Head	U Arms	L Arms	Torso	mPCP	AOP	(time (s))
		81.5 83.8					
<i></i> 3'14	_	-	_	-	63.6	74.0	-
ECCV'10	97.6	68.2	48.1	86.1	69.4	80.0	-
R'15	98.5	77.2	71.3	88.5	80.7	84.9	-

	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	PCKh	AUC
	94.1 96.6	90.2 94.6					68.6 79.4		
16	97.6 97.8	95.4 95.0					80.6 79.4		
	96.2 97.8	93.1 93.3					74.1 70.2		_

	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	PCK	AUC
	97.0 97.4	91.0 92.7					82.0 87.2		
"16	97.8 96.8	92.5 89.0					89.9 82.5		

[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose estimation: New benchmark and state of the art analysis. In CVPR'14.

[2] M. Eichner and V. Ferrari. We are family: Joint pose estimation of multiple persons. In *ECCV'10*. [3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. *arXiv'15*. [4] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele. Deepercut: A deeper, stronger, and faster multi-person pose estimation model. *arXiv'16*. [5] S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for human

[6] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with

[7] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image