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Goal

• Multi-person pose estimation in monocular RGB images

State of the Art

• single person + occl. reasoning [Chen&Yuille, CVPR’15]

– no true multi-person reasoning

• two-stage approaches [Eichner&Ferrari, ECCV’10]

– reliable people detector required
– feed-forward approach prone to errors

Contributions

• Novel joint formulation

+ no people detector required
+ joint labeling and grouping of body part hypotheses
+ joint multi-person pose estimation

Qualitative results
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DeepCut

• Joint labeling and grouping of parts via 0/1 variables
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I. Unary probabilities

• fully-convolutional CNN architecture based on VGG [7]
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II. Pairwise probabilities

• Proximity

– same body part class (c = c′)
– probability ∝ distance−1

• Kinematic relations

– different body part classes (c!= c′)
– probability via logistic regression from

spatial relationship

• Capture part relationships within/across people

DeepCut (contd.)
III. Integer Linear Program (ILP)

• Substitute zdd ′cc′ = xdc xd ′c′ ydd ′ to convert objective to ILP

• NP-Hard problem solved via branch-and-cut (1% gap)

• Linear constraints on 0/1 labelings: plausible poses

– uniqueness
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Improvements: DeeperCut (arXiv’16) [4]

I. Unary probabilities

• deeper architectures based on Residual Networks [3]

II. Pairwise probabilities

• image conditioned CNN pairwise regression

– probability via logistic regression from
both spatial relationship and appearance

regression from left shoulder
predicting right knee location

regression from all parts unary only

III. Multi-stage optimization

• optimize for reliable parts first, add less reliable later

Stage 1 Stage 2 Stage 3

head, shoulders elbows, wrists hips, knees, ankles

Results
Multi-person pose estimation

• MPII Multi-Person dataset [1]

– Mean Average Precision (mAP) metric
Setting Head Sho Elb Wri Hip Knee Ank mAP time (s)

subset of 288 images
DeepCut 73.4 71.8 57.9 39.9 56.7 44.0 32.0 54.1 57995
DeeperCut

+image cond. pairwise 83.1 75.8 64.6 54.0 60.6 52.0 44.9 62.6 2336
+deeper architecture 83.3 79.4 66.1 57.9 63.5 60.5 49.9 66.2 1333

+multi-stage optim. 87.5 82.8 70.2 61.6 66.0 60.6 56.5 69.7 230

full set
DeeperCut (1-stage optim.) 73.7 65.4 54.9 45.2 52.3 47.8 40.7 54.7 2785
DeeperCut 79.1 72.2 59.7 50.0 56.0 51.0 44.6 59.4 485
Faster R-CNN [6] + unary 64.9 62.9 53.4 44.1 50.7 43.1 35.2 51.0 1

• We are Family (WAF) [2]

– Percentage of Correct Parts (PCP) metric
Setting Head U Arms L Arms Torso mPCP AOP (time (s))

DeepCut 99.3 81.5 79.5 87.1 84.7 86.5 22000
DeeperCut 99.3 83.8 81.9 87.1 86.3 88.1 13

Ghiasi et al., CVPR’14 - - - - 63.6 74.0 -
Eichner&Ferrari, ECCV’10 97.6 68.2 48.1 86.1 69.4 80.0 -
Chen&Yuille, CVPR’15 98.5 77.2 71.3 88.5 80.7 84.9 -

• Failure cases

Single person pose estimation

• MPII Single Person dataset [1]

Setting Head Shoulder Elbow Wrist Hip Knee Ankle PCKh AUC

DeepCut (unary) 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4 56.5
DeeperCut (unary) 96.6 94.6 88.5 84.4 87.6 83.9 79.4 88.3 60.7

Newell et al., arXiv’16 97.6 95.4 90.0 85.2 88.7 85.0 80.6 89.4 59.6
Wei et al., CVPR’16 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5 61.4
Gkioxary et al., arXiv’16 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1 57.3
Lifshitz et al., arXiv’16 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0 56.8

• Leeds Sports Poses (LSP) [5]
Setting Head Shoulder Elbow Wrist Hip Knee Ankle PCK AUC

DeepCut (unary) 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1 63.5
DeeperCut (unary) 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1 66.1

Wei et al., CVPR’16 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5 65.4
Lifshitz et al., arXiV’16 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7 61.1
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